Article 5218

Title of the article

METHODS OF TRANSFORMATION OF HEAVY METALS IN THE SOILS OF THE AGGLOMERATION
OF VOLGOGRAD-VOLZHSKY 

Authors

Zaikina Veronika Nikolaevna, Postgraduate student, Volgograd State Technical University (28 Lenin avenue, Volgograd, Russia),
E-mail: veronikazaikina@mail.ru
Okolelova Alla Aronovna, Doctor of biological sciences, professor, sub-department of industrial ecology and safety, Volgograd State Technical University (28 Lenin avenue, Volgograd, Russia), E-mail: allaokol@mail.ru
Korchagina Mariya Pavlovna, Master’s degree student, Volgograd State Technical University (28 Lenin avenue, Volgograd, Russia), E-mail: maria.korchagina96@gmail.com 

Index UDK

631.4 

DOI

10.21685/2307-9150-2018-2-5 

Abstract

Background. The main reason of substantial flow of pollutants (heavy metals, etc.), entering the soil agglomeration of Volgograd-Volzhskiy is a huge amount of anthropogenic sources of environmental pollution (industrial plants, highways, gas stations, etc.). Therefore, scientific and practical interest is the monitoring of content of heavy metals (HM) of various forms in soils of various genesis in close proximity to sources of anthropogenic impact on ecosystems, required to develop efficient and environmentally friendly measures to reduce the “metal press”.
Material and methods. The samples are light brown and alluvial soils for analysis was carried out on the territory of Volzhsky of the Volgograd region (the gas station number 1 and number 3, the river port) in 2015–2017. In the samples was determined the concentration of gross, mobile, water-soluble and sorbate forms of heavy metals. The concentration of water soluble forms of TM were determined in water extracts from soils, and their sorbate forms in soil samples exposed to elevated temperature and pressure in an autoclave.
Results and conclusions. In work the comparative analysis of concentrations of gross, mobile, water-soluble and sorbate forms of heavy metals (Cu, Zn and Ni) and their percentage in relation to their gross forms. When analyzing the test data it is obvious that in soils dominated by zinc, less copper. In the soil of river port detected maximum concentrations of total forms of Cu and Ni and sorbing form of Ni and minimum concentrations of the gross forms of Zn, the mobile forms of Ni, sorbing forms of Cu and Zn. The number of TM enshrined in the minerals in all soils more than the maintenance of mobile and water-soluble. Motile fractions of HM in
3–13 times less than their total forms. Water-soluble fractions of HM 2–10 times less than moving. Fractions isolated after thermal desorption 2–4 times less than the total content of TM. 

Key words

light-brown and alluvial soil; gross, mobile, water-soluble and sorbate forms of heavy metals (HM); water extraction; thermal desorption 

 

 Download PDF

References

1. Nevedrov N. P., Protsenko E. P. Problemy prirodopol'zovaniya i ekologicheskaya situatsiya v Evropeyskoy Rossii i na sopredel'nykh territoriyakh: materialy VII Mezhdunar. nauch. konf. (pamyati professora Petina A. N.) 24–26 oktyabrya 2017 [Problems of environmental management and the environmental situation in European Russia and adjacent territories: proceedings of VII International scientific and practical conference (in memory of professor A. N. Petin) 24–26th of October 2017]. Belgorod: Politerra, 2017, pp. 211–213.
2. Val'kov V. F., Kazeev K. Sh., Kolesnikov S. I. Pochvovedenie [Soil science]. Moscow; Rostov-on-Don: MarT, 2006, 496 p.
3. Pochvenno-ekologicheskiy monitoring i okhrana pochv [Soil-ecological monitoring and soil protection]. Eds. D. S. Orlov, V. D. Vasil'evskaya. Moscow: Izd-vo MGU, 1994, 272 p.
4. GOST 14106–80 Avtoklavy vulkanizatsionnye. Obshchie tekhnicheskie usloviya [State Standart 14106–80 Autoclaves vulcanization. General technical conditions]. Moscow: Standartinform, 1982, 13 p.
5. GOST 26423–85 Metody opredeleniya udel'noy elektricheskoy provodimosti, rN i plotnogo ostatka vodnoy vytyazhki [State Standart 26423–85 Methods for determining the electrical conductivity, pH and dense residue of the aqueous extract]. Moscow: Standartinform, 2011, 7 p.
6. Pinskiy D. L. Ionoobmennye protsessy v pochvakh [Ion exchange processes in soils]. Pushchino, 1997, 166 p.
7. Pinskiy D. L., Oreshkina V. N. Eksperimental'naya ekologiya [Experimental ecology]. Moscow: Nauka, 1991, pp. 201–212.
8. Brown G. E., Foster A. L., Ostergren J. D. Proc. Natl. Acad. Sci. USA. 1999, vol. 96, pp. 3388–3395.
9. Chiarello R. P., Sturchio N. C., Grace J. D., Geissbuhler P., Sorensen L. B., Cheng L., Xu S. Geochim. Cosmochim. Acta. 1997, vol. 61, pp. 1467–1474.
10. Dahn R., Scheidegger A. M., Manceau A., Schlegel M., Baeyens B., Bradbary H., Morales M. Geochim. Cosmochim. Acta. 2002, vol. 66, pp. 2335–2347.
11. Ford R. G., Scheinost A. C., Sparks D. L. Adv. Agron. 2001, vol. 74, pp. 41–62.
12. Grelach R., Radtsse U., Thonnessen M. Geogr. Rdsch. 1997, no. 10, pp. 556–561.
13. Manceau A., Tamura N., Celestre R. S., Macdowell A. A., Geofroy N., Sposito G., Padmore H. A. Environ. Sci. Technol. 2003, vol. 37, pp. 75–80.
14. McBride M. B. Adv. Soil Sci. 1989, vol. 10, pp. 1–47.
15. Robin D., Martin M., Haerdi W. Arch. Sci. 1995, vol. 48, no. 1, pp. 19–28.
16. Scheckel K. G., Scheinost A. C., Ford R. G., Sparks D. L. Geochim. Cosmochim. Acta. 2000, vol. 64, pp. 2727–2735.
17. Schlegel M. L., Manceau A., Charlet L., Chateigner D., Hazemann J. I. Geochim. Cosmochim. Acta. 2001, vol. 65, pp. 4155–4170.
18. Watson E. B. Geochim. Cosmochim. Acta. 1996, vol. 60, pp. 5013–5020.
19. Val'kov V. F., Eliseeva N. N., Imgrunt I. I., Kazeev K. Sh., Kolesnikov S. I. Spravochnik po otsenke pochv [Soil assessment handbook]. Rostov-on-Don, 2004, 236 p. 

 

Дата создания: 07.02.2019 09:54
Дата обновления: 07.02.2019 13:30